Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Comput Struct Biotechnol J ; 20: 5870-5872, 2022.
Article in English | MEDLINE | ID: covidwho-2086109

ABSTRACT

Our hypothesis about evolution of the COVID-19 pandemic foresees an inverse relation between infectivity (R0) and lethality (L) of SARS-CoV-2. The above parameters are driven by a continuing mutation process granting the virus a clear survival advantage over virulence. For interpreting this relation we adopted a simple equation, R0 × L ≈ k, by which R0 and L depend upon a constant k, that corresponds to an intrinsic property of the viral species involved. The hypothesis was verified by following changes of the R0 and L terms of the formula in the different variants of SARS-CoV-2 that progressively appeared. A further validation came when the equation was applied to pandemic and epidemic influenza type A viruses, Ebola virus and measles virus. We believe this equation that considers virus biology in Darwinian terms could be extremely useful to better face infectious viral threats and validate virus-host molecular interactions relevant to viral pathogenesis.

2.
Int J Biol Macromol ; 222(Pt A): 972-993, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2041800

ABSTRACT

Several hypotheses have been presented on the origin of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from its identification as the agent causing the current coronavirus disease 19 (COVID-19) pandemic. So far, no solid evidence has been found to support any hypothesis on the origin of this virus, and the issue continue to resurface over and over again. Here we have unfolded a pattern of distribution of several mutations in the SARS-CoV-2 proteins in 24 geo-locations across different continents. The results showed an evenly uneven distribution of the unique protein variants, distinct mutations, unique frequency of common conserved residues, and mutational residues across these 24 geo-locations. Furthermore, ample mutations were identified in the evolutionarily conserved invariant regions in the SARS-CoV-2 proteins across almost all geo-locations studied. This pattern of mutations potentially breaches the law of evolutionary conserved functional units of the beta-coronavirus genus. These mutations may lead to several novel SARS-CoV-2 variants with a high degree of transmissibility and virulence. A thorough investigation on the origin and characteristics of SARS-CoV-2 needs to be conducted in the interest of science and for the preparation of meeting the challenges of potential future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Pandemics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Mutation
3.
Viruses ; 14(6)2022 05 31.
Article in English | MEDLINE | ID: covidwho-1869828

ABSTRACT

Remdesivir is the first drug approved for treatment of COVID-19 but current evidence for recommending its use for the treatment of moderate-to-severe disease is still controversial among clinical guidelines. We performed a nationwide, registry-based study including all Italian hospitalized patients with COVID-19 treated with remdesivir to assess the impact of major confounders on crude 15-day and 29-day mortality. Mortality was calculated using the Kaplan-Meier estimator and the Cox proportional-hazards model was applied to analyze the risks by patient's baseline features. In total, 16,462 patients treated with remdesivir from 29 October 2020 to 17 December 2020 were entered in the study. Crude 15-day and 29-day mortality were 7.1% (95% CI, 6.7-7.5%) and 11.7% (95% CI, 11.2-12.2%), respectively. Being treated within two days of admission reduced the risk of death by about 40% (HR 1.4, 95% CI, 1.2-1.6). Results from the largest cohort of remdesivir-treated patients suggests that mortality in SARS-CoV-2 hospitalized patients is substantially influenced by the days between SARS-CoV-2 diagnosis and drug prescription. Current recommendations and future clinical trials for remdesivir alone or in combination should carefully consider the target population and timing for best efficacy of treatment.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Testing , Humans , Italy/epidemiology , Registries
4.
PeerJ ; 10: e13136, 2022.
Article in English | MEDLINE | ID: covidwho-1753927

ABSTRACT

Open reading frame 8 (ORF8) shows one of the highest levels of variability among accessory proteins in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19). It was previously reported that the ORF8 protein inhibits the presentation of viral antigens by the major histocompatibility complex class I (MHC-I), which interacts with host factors involved in pulmonary inflammation. The ORF8 protein assists SARS-CoV-2 in evading immunity and plays a role in SARS-CoV-2 replication. Among many contributing mutations, Q27STOP, a mutation in the ORF8 protein, defines the B.1.1.7 lineage of SARS-CoV-2, engendering the second wave of COVID-19. In the present study, 47 unique truncated ORF8 proteins (T-ORF8) with the Q27STOP mutations were identified among 49,055 available B.1.1.7 SARS-CoV-2 sequences. The results show that only one of the 47 T-ORF8 variants spread to over 57 geo-locations in North America, and other continents, which include Africa, Asia, Europe and South America. Based on various quantitative features, such as amino acid homology, polar/non-polar sequence homology, Shannon entropy conservation, and other physicochemical properties of all specific 47 T-ORF8 protein variants, nine possible T-ORF8 unique variants were defined. The question as to whether T-ORF8 variants function similarly to the wild type ORF8 is yet to be investigated. A positive response to the question could exacerbate future COVID-19 waves, necessitating severe containment measures.

5.
Int J Biol Macromol ; 194: 128-143, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1549823

ABSTRACT

The devastating impact of the ongoing coronavirus disease 2019 (COVID-19) on public health, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has made targeting the COVID-19 pandemic a top priority in medical research and pharmaceutical development. Surveillance of SARS-CoV-2 mutations is essential for the comprehension of SARS-CoV-2 variant diversity and their impact on virulence and pathogenicity. The SARS-CoV-2 open reading frame 10 (ORF10) protein interacts with multiple human proteins CUL2, ELOB, ELOC, MAP7D1, PPT1, RBX1, THTPA, TIMM8B, and ZYG11B expressed in lung tissue. Mutations and co-occurring mutations in the emerging SARS-CoV-2 ORF10 variants are expected to impact the severity of the virus and its associated consequences. In this article, we highlight 128 single mutations and 35 co-occurring mutations in the unique SARS-CoV-2 ORF10 variants. The possible predicted effects of these mutations and co-occurring mutations on the secondary structure of ORF10 variants and host protein interactomes are presented. The findings highlight the possible effects of mutations and co-occurring mutations on the emerging 140 ORF10 unique variants from secondary structure and intrinsic protein disorder perspectives.


Subject(s)
COVID-19/virology , Host Microbial Interactions/immunology , Open Reading Frames , SARS-CoV-2/genetics , Viral Proteins , Humans , Mutation , Viral Proteins/genetics , Viral Proteins/immunology
6.
Int J Biol Macromol ; 191: 934-955, 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1433283

ABSTRACT

The spike (S) protein is a critical determinant of the infectivity and antigenicity of SARS-CoV-2. Several mutations in the S protein of SARS-CoV-2 have already been detected, and their effect in immune system evasion and enhanced transmission as a cause of increased morbidity and mortality are being investigated. From pathogenic and epidemiological perspectives, S proteins are of prime interest to researchers. This study focused on the unique variants of S proteins from six continents: Asia, Africa, Europe, Oceania, South America, and North America. In comparison to the other five continents, Africa had the highest percentage of unique S proteins (29.1%). The phylogenetic relationship implies that unique S proteins from North America are significantly different from those of the other five continents. They are most likely to spread to the other geographic locations through international travel or naturally by emerging mutations. It is suggested that restriction of international travel should be considered, and massive vaccination as an utmost measure to combat the spread of the COVID-19 pandemic. It is also further suggested that the efficacy of existing vaccines and future vaccine development must be reviewed with careful scrutiny, and if needed, further re-engineered based on requirements dictated by new emerging S protein variants.


Subject(s)
COVID-19/epidemiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution/immunology , COVID-19/immunology , Entropy , Humans , Isoelectric Point , Mutation/immunology , Pandemics/statistics & numerical data , Phylogeny , Spike Glycoprotein, Coronavirus/immunology
7.
Environ Res ; 204(Pt B): 112092, 2022 03.
Article in English | MEDLINE | ID: covidwho-1433211

ABSTRACT

Various lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have contributed to prolongation of the Coronavirus Disease 2019 (COVID-19) pandemic. Several non-synonymous mutations in SARS-CoV-2 proteins have generated multiple SARS-CoV-2 variants. In our previous report, we have shown that an evenly uneven distribution of unique protein variants of SARS-CoV-2 is geo-location or demography-specific. However, the correlation between the demographic transmutability of the SARS-CoV-2 infection and mutations in various proteins remains unknown due to hidden symmetry/asymmetry in the occurrence of mutations. This study tracked how these mutations are emerging in SARS-CoV-2 proteins in six model countries and globally. In a geo-location, considering the mutations having a frequency of detection of at least 500 in each SARS-CoV-2 protein, we studied the country-wise percentage of invariant residues. Our data revealed that since October 2020, highly frequent mutations in SARS-CoV-2 have been observed mostly in the Open Reading Frame (ORF) 7b and ORF8, worldwide. No such highly frequent mutations in any of the SARS-CoV-2 proteins were found in the UK, India, and Brazil, which does not correlate with the degree of transmissibility of the virus in India and Brazil. However, we have found a signature that SARS-CoV-2 proteins were evolving at a higher rate, and considering global data, mutations are detected in the majority of the available amino acid locations. Fractal analysis of each protein's normalized factor time series showed a periodically aperiodic emergence of dominant variants for SARS-CoV-2 protein mutations across different countries. It was noticed that certain high-frequency variants have emerged in the last couple of months, and thus the emerging SARS-CoV-2 strains are expected to contain prevalent mutations in the ORF3a, membrane, and ORF8 proteins. In contrast to other beta-coronaviruses, SARS-CoV-2 variants have rapidly emerged based on demographically dependent mutations. Characterization of the periodically aperiodic nature of the demographic spread of SARS-CoV-2 variants in various countries can contribute to the identification of the origin of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Uncertainty
8.
Autoimmun Rev ; 20(11): 102941, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401227

ABSTRACT

Although vaccination represents the most promising way to stop or contain the coronavirus disease 2019 (COVID-19) pandemic and safety and effectiveness of available vaccines were proven, a small number of individuals who received anti-SARS-CoV-2 vaccines developed a prothrombotic syndrome. Vaccine-induced immune thrombotic thrombocytopenia (VITT) can be triggered by the adenoviral vector-based vaccine, whereas lipid nanoparticle-mRNA-based vaccines can induce rare cases of deep vein thrombosis (DVT). Although the main pathogenic mechanisms behind this rare phenomenon have not yet been identified, both host and vaccine factors might be involved, with pathology at least in part being related to the vaccine-triggered autoimmune reaction. In this review, we are considering some aspects related to pathogenesis, major risk factors, as well as peculiarities of diagnosis and treatment of this rare condition.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Viral Vaccines , Autoimmunity , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination/adverse effects
11.
Biomolecules ; 11(7)2021 07 13.
Article in English | MEDLINE | ID: covidwho-1308294

ABSTRACT

Two adenovirus-based vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S, and two mRNA-based vaccines, BNT162b2 and mRNA.1273, have been approved by the European Medicines Agency (EMA), and are invaluable in preventing and reducing the incidence of coronavirus disease-2019 (COVID-19). Recent reports have pointed to thrombosis with associated thrombocytopenia as an adverse effect occurring at a low frequency in some individuals after vaccination. The causes of such events may be related to SARS-CoV-2 spike protein interactions with different C-type lectin receptors, heparan sulfate proteoglycans (HSPGs) and the CD147 receptor, or to different soluble splice variants of the spike protein, adenovirus vector interactions with the CD46 receptor or platelet factor 4 antibodies. Similar findings have been reported for several viral diseases after vaccine administration. In addition, immunological mechanisms elicited by viral vectors related to cellular delivery could play a relevant role in individuals with certain genetic backgrounds. Although rare, the potential COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) requires immediate validation, especially in risk groups, such as the elderly, chronic smokers, and individuals with pre-existing incidences of thrombocytopenia; and if necessary, a reformulation of existing vaccines.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Thrombosis/etiology , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , BNT162 Vaccine , COVID-19/immunology , ChAdOx1 nCoV-19 , Humans , Risk Factors , SARS-CoV-2/immunology , Smokers , Spike Glycoprotein, Coronavirus/immunology , Thrombocytopenia/etiology , Thrombocytopenia/immunology , Thrombosis/immunology , Vaccination/adverse effects
12.
Viruses ; 13(7)2021 06 29.
Article in English | MEDLINE | ID: covidwho-1289030

ABSTRACT

The estimated smooth curve of the percentage of subjects positive to SARS-CoV-2 started decreasing in Italy at the beginning of January 2021, due to the government containment measures undertaken from Christmas until 7 January. Approximately two weeks after releasing the measures, the curve stopped to decrease and remained approximately constant for four weeks to increase again in the middle of February. This epidemic phase had a public health care impact since, from the beginning of the fourth week of February, the curve of the intensive care unit's occupancy started to grow. This wave of infection was characterized by the presence of new virus variants, with a higher than 80% dominance of the so-called "English" variant, since 15 April. School activities in Italy started at different times from 7 January until 8 February, depending on every region's decision. Our present data on the incidence of SARS-CoV-2 in different age groups in Italy are in agreement with literature reports showing that subjects older than 10 years are involved in virus transmission. More importantly, we provide evidence to support the hypothesis that also individuals of age 0-9 years can significantly contribute to the spread of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Schools , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/transmission , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Italy/epidemiology , Middle Aged , Public Health , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Students , Young Adult
13.
Int J Biol Macromol ; 181: 801-809, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1188606

ABSTRACT

The current Coronavirus Disease 19 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) shows similar pathology to MERS and SARS-CoV, with a current estimated fatality rate of 1.4%. Open reading frame 10 (ORF10) is a unique SARS-CoV-2 accessory protein, which contains eleven cytotoxic T lymphocyte (CTL) epitopes each of nine amino acids in length. Twenty-two unique SARS-CoV-2 ORF10 variants have been identified based on missense mutations found in sequence databases. Some of these mutations are predicted to decrease the stability of ORF10 in silico physicochemical and structural comparative analyses were carried out on SARS-CoV-2 and Pangolin-CoV ORF10 proteins, which share 97.37% amino acid (aa) homology. Though there is a high degree of ORF10 protein similarity of SARS-CoV-2 and Pangolin-CoV, there are differences of these two ORF10 proteins related to their sub-structure (loop/coil region), solubility, antigenicity and shift from strand to coil at aa position 26 (tyrosine). SARS-CoV-2 ORF10, which is apparently expressed in vivo since reactive T cell clones are found in convalescent patients should be monitored for changes which could correlate with the pathogenesis of COVID-19.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Epitopes, T-Lymphocyte/genetics , Genome, Viral/genetics , Humans , Mutation , Open Reading Frames , SARS-CoV-2/metabolism , Sequence Homology , Spike Glycoprotein, Coronavirus/genetics , Viral Nonstructural Proteins/metabolism , Viral Proteins/genetics
14.
Comput Biol Med ; 133: 104380, 2021 06.
Article in English | MEDLINE | ID: covidwho-1184908

ABSTRACT

Immune evasion is one of the unique characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) attributed to its ORF8 protein. This protein modulates the adaptive host immunity through down-regulation of MHC-1 (Major Histocompatibility Complex) molecules and innate immune responses by surpassing the host's interferon-mediated antiviral response. To understand the host's immune perspective in reference to the ORF8 protein, a comprehensive study of the ORF8 protein and mutations possessed by it have been performed. Chemical and structural properties of ORF8 proteins from different hosts, such as human, bat, and pangolin, suggest that the ORF8 of SARS-CoV-2 is much closer to ORF8 of Bat RaTG13-CoV than to that of Pangolin-CoV. Eighty-seven mutations across unique variants of ORF8 in SARS-CoV-2 can be grouped into four classes based on their predicted effects (Hussain et al., 2021) [1]. Based on the geo-locations and timescale of sample collection, a possible flow of mutations was built. Furthermore, conclusive flows of amalgamation of mutations were found upon sequence similarity analyses and consideration of the amino acid conservation phylogenies. Therefore, this study seeks to highlight the uniqueness of the rapidly evolving SARS-CoV-2 through the ORF8.


Subject(s)
COVID-19 , SARS-CoV-2 , Evolution, Molecular , Genome, Viral , Humans , Phylogeny
15.
Viruses ; 13(3)2021 03 11.
Article in English | MEDLINE | ID: covidwho-1181629

ABSTRACT

(1) Background: A better understanding of COVID-19 dynamics in terms of interactions among individuals would be of paramount importance to increase the effectiveness of containment measures. Despite this, the research lacks spatiotemporal statistical and mathematical analysis based on large datasets. We describe a novel methodology to extract useful spatiotemporal information from COVID-19 pandemic data. (2) Methods: We perform specific analyses based on mathematical and statistical tools, like mathematical morphology, hierarchical clustering, parametric data modeling and non-parametric statistics. These analyses are here applied to the large dataset consisting of about 19,000 COVID-19 patients in the Veneto region (Italy) during the entire Italian national lockdown. (3) Results: We estimate the COVID-19 cumulative incidence spatial distribution, significantly reducing image noise. We identify four clusters of connected provinces based on the temporal evolution of the incidence. Surprisingly, while one cluster consists of three neighboring provinces, another one contains two provinces more than 210 km apart by highway. The survival function of the local spatial incidence values is modeled here by a tapered Pareto model, also used in other applied fields like seismology and economy in connection to networks. Model's parameters could be relevant to describe quantitatively the epidemic. (4) Conclusion: The proposed methodology can be applied to a general situation, potentially helping to adopt strategic decisions such as the restriction of mobility and gatherings.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Cluster Analysis , Humans , Incidence , Models, Theoretical , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spatio-Temporal Analysis
16.
ACS Nano ; 15(5): 8069-8086, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1172013

ABSTRACT

Therapeutic options for the highly pathogenic human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the current pandemic coronavirus disease (COVID-19) are urgently needed. COVID-19 is associated with viral pneumonia and acute respiratory distress syndrome causing significant morbidity and mortality. The proposed treatments for COVID-19 have shown little or no effect in the clinic so far. Additionally, bacterial and fungal pathogens contribute to the SARS-CoV-2-mediated pneumonia disease complex. The antibiotic resistance in pneumonia treatment is increasing at an alarming rate. Therefore, carbon-based nanomaterials (CBNs), such as fullerene, carbon dots, graphene, and their derivatives constitute a promising alternative due to their wide-spectrum antimicrobial activity, biocompatibility, biodegradability, and capacity to induce tissue regeneration. Furthermore, the antimicrobial mode of action is mainly physical (e.g., membrane distortion), characterized by a low risk of antimicrobial resistance. In this Review, we evaluated the literature on the antiviral activity and broad-spectrum antimicrobial properties of CBNs. CBNs had antiviral activity against 13 enveloped positive-sense single-stranded RNA viruses, including SARS-CoV-2. CBNs with low or no toxicity to humans are promising therapeutics against the COVID-19 pneumonia complex with other viruses, bacteria, and fungi, including those that are multidrug-resistant.


Subject(s)
COVID-19 , Pneumonia, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Carbon , Humans , Pneumonia, Viral/drug therapy , SARS-CoV-2
17.
Cells ; 10(3)2021 02 24.
Article in English | MEDLINE | ID: covidwho-1147459

ABSTRACT

Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear-cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.


Subject(s)
Biological Transport/physiology , Cells/metabolism , Endosomal Sorting Complexes Required for Transport/physiology , Viruses/metabolism , Humans
18.
Viruses ; 13(3):463, 2021.
Article in English | MDPI | ID: covidwho-1126068

ABSTRACT

(1) Background: A better understanding of COVID-19 dynamics in terms of interactions among individuals would be of paramount importance to increase the effectiveness of containment measures. Despite this, the research lacks spatiotemporal statistical and mathematical analysis based on large datasets. We describe a novel methodology to extract useful spatiotemporal information from COVID-19 pandemic data. (2) Methods: We perform specific analyses based on mathematical and statistical tools, like mathematical morphology, hierarchical clustering, parametric data modeling and non-parametric statistics. These analyses are here applied to the large dataset consisting of about 19,000 COVID-19 patients in the Veneto region (Italy) during the entire Italian national lockdown. (3) Results: We estimate the COVID-19 cumulative incidence spatial distribution, significantly reducing image noise. We identify four clusters of connected provinces based on the temporal evolution of the incidence. Surprisingly, while one cluster consists of three neighboring provinces, another one contains two provinces more than 210 km apart by highway. The survival function of the local spatial incidence values is modeled here by a tapered Pareto model, also used in other applied fields like seismology and economy in connection to networks. Model’s parameters could be relevant to describe quantitatively the epidemic. (4) Conclusion: The proposed methodology can be applied to a general situation, potentially helping to adopt strategic decisions such as the restriction of mobility and gatherings.

19.
Hum Vaccin Immunother ; 17(2): 416-417, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1093444

ABSTRACT

It has been theorized that Calmette-Guérin bacillus may prevent or reduce the severity of COVID-19 through a nonspecific stimulation of the immune system. A preliminary assessment of SARS-CoV-2 infection rates and outcomes among 2803 individuals affected with high risk non-muscle-invasive bladder cancer and treated with intra-bladder instillation of BCG, showed no evidence of a protective effect. However, the interpretation of these data need some caution, due to the low prevalence of infection (<1%) observed within this population, along with the fact that intra-bladder administration cannot mirror the usual intradermal administration of BCG, in particular in patients partially immunocompromised. Confirmation by larger prospective studies is required.


Subject(s)
BCG Vaccine/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Administration, Intravesical , Aged , Aged, 80 and over , BCG Vaccine/metabolism , COVID-19/metabolism , Female , Hospitalization/trends , Humans , Italy/epidemiology , Male , Middle Aged , Risk Factors , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/metabolism
20.
Vaccines (Basel) ; 8(4)2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-1024664

ABSTRACT

SARS-CoV-2 is highly contagious, rapidly turned into a pandemic, and is causing a relevant number of critical to severe life-threatening COVID-19 patients. However, robust statistical studies of a large cohort of patients, potentially useful to implement a vaccination campaign, are rare. We analyzed public data of about 19,000 patients for the period 28 February to 15 May 2020 by several mathematical methods. Precisely, we describe the COVID-19 evolution of a number of variables that include age, gender, patient's care location, and comorbidities. It prompts consideration of special preventive and therapeutic measures for subjects more prone to developing life-threatening conditions while affording quantitative parameters for predicting the effects of an outburst of the pandemic on public health structures and facilities adopted in response. We propose a mathematical way to use these results as a powerful tool to face the pandemic and implement a mass vaccination campaign. This is done by means of priority criteria based on the influence of the considered variables on the probability of both death and infection.

SELECTION OF CITATIONS
SEARCH DETAIL